# MDX Reference

Normal text

italic text

bold text

bold italic text

strikethrough text

blockquote

• list item 1
• list item 2
• list item 3
1. numbered list item 1
2. numbered list item 2
3. numbered list item 3

## Code Blocks​

const foo = 'bar';

const foo: string = 'bar';
# MDX Reference# Header 1## Header 2### Header 3#### Header 4##### Header 5###### Header 6Normal text *italic text***bold text*****bold italic text***~~strikethrough text~~> blockquote<br/>- list item 1- list item 2- list item 31. numbered list item 12. numbered list item 23. numbered list item 3\jsconst foo = 'bar';\\tsconst foo: string = 'bar';\{/* wow so meta */}

## Tabs​

This is tab 1
<Tabs>    <TabItem value="tab1" label="Tab 1" default>        This is tab 1    </TabItem>    <TabItem value="tab2" label="Tab 2">        This is tab 2    </TabItem>    <TabItem value="tab3" label="Tab 3">        This is tab 3    </TabItem></Tabs><!-- even more meta -->

note

This is a note. It notes things.

caution

This is a caution. It cautions things.

danger

This is a danger. It is dangerous.

info

This is an info. It informs things.

tip

This is a tip. It tips things.

## Latex Equations​

Let $f\colon[a,b]\to\R$ be Riemann integrable. Let $F\colon[a,b]\to\R$ be $F(x)=\int_{a}^{x} f(t)\,dt$. Then $F$ is continuous, and at all $x$ such that $f$ is continuous at $x$, $F$ is differentiable at $x$ with $F'(x)=f(x)$.

This is a block of aligned $\LaTeX$ equations:

\begin{align} \nabla \cdot \vec{\bf{E}} &= \frac{\rho}{\epsilon_0} \\ \nabla \cdot \vec{\bf{B}} &= 0 \\ \nabla \times \vec{\bf{E}} &= - \frac{\partial \vec{\bf{B}}}{\partial \mathrm{t}} \\ \nabla \times \vec{\bf{B}} &= \mu_0 \left( \vec{\bf{J}} + \epsilon_0 \frac{\partial \vec{\bf{E}}}{\partial \mathrm{t}} \right) \end{align}