Skip to main content

MDX Reference

Header 1

Header 2

Header 3

Header 4

Header 5
Header 6

Normal text

italic text

bold text

bold italic text

strikethrough text

blockquote


  • list item 1
  • list item 2
  • list item 3
  1. numbered list item 1
  2. numbered list item 2
  3. numbered list item 3

Code Blocks

const foo = 'bar';

const foo: string = 'bar';
# MDX Reference

# Header 1
## Header 2
### Header 3
#### Header 4
##### Header 5
###### Header 6

Normal text

*italic text*

**bold text**

***bold italic text***

~~strikethrough text~~

> blockquote

<br/>

- list item 1
- list item 2
- list item 3

1. numbered list item 1
2. numbered list item 2
3. numbered list item 3

\```js
const foo = 'bar';
\```

\```ts
const foo: string = 'bar';
\```

{/* wow so meta */}

Tabs

This is tab 1
<Tabs>
<TabItem value="tab1" label="Tab 1" default>
This is tab 1
</TabItem>
<TabItem value="tab2" label="Tab 2">
This is tab 2
</TabItem>
<TabItem value="tab3" label="Tab 3">
This is tab 3
</TabItem>
</Tabs>
<!-- even more meta -->

Admonitions

note

This is a note. It notes things.

caution

This is a caution. It cautions things.

danger

This is a danger. It is dangerous.

info

This is an info. It informs things.

tip

This is a tip. It tips things.

Mermaid Flow Charts

Latex Equations

Let f ⁣:[a,b]Rf\colon[a,b]\to\R be Riemann integrable. Let F ⁣:[a,b]RF\colon[a,b]\to\R be F(x)=axf(t)dtF(x)=\int_{a}^{x} f(t)\,dt. Then FF is continuous, and at all xx such that ff is continuous at xx, FF is differentiable at xx with F(x)=f(x)F'(x)=f(x).

This is a block of aligned LaTeX\LaTeX equations:

E=ρϵ0B=0×E=Bt×B=μ0(J+ϵ0Et)\begin{align} \nabla \cdot \vec{\bf{E}} &= \frac{\rho}{\epsilon_0} \\ \nabla \cdot \vec{\bf{B}} &= 0 \\ \nabla \times \vec{\bf{E}} &= - \frac{\partial \vec{\bf{B}}}{\partial \mathrm{t}} \\ \nabla \times \vec{\bf{B}} &= \mu_0 \left( \vec{\bf{J}} + \epsilon_0 \frac{\partial \vec{\bf{E}}}{\partial \mathrm{t}} \right) \end{align}